Telegram Group & Telegram Channel
Команда дня: pipe

Сегодня делимся полезной фишкой из библиотеки pandas — метод .pipe() для создания чистых и читаемых цепочек обработки данных.

import pandas as pd

# Пример: очистка и преобразование данных в одну цепочку
def clean_data(df):
return df.dropna().reset_index(drop=True)

def add_age_group(df):
df['age_group'] = pd.cut(df['age'], bins=[0, 18, 35, 60, 100], labels=['Kid', 'Young', 'Adult', 'Senior'])
return df

# Используем pipe для последовательной обработки
df = (pd.read_csv('data.csv')
.pipe(clean_data)
.pipe(add_age_group))


Зачем это нужно:
🎌 .pipe() позволяет организовать преобразования данных в логическую цепочку, улучшая читаемость кода
🎌 Удобно для сложных ETL-процессов (Extract, Transform, Load)
🎌 Легко добавлять новые шаги обработки

Пример в деле:
def normalize_column(df, col):
df[col] = (df[col] - df[col].mean()) / df[col].std()
return df

df = (pd.DataFrame({'value': [10, 20, 30, 40]})
.pipe(normalize_column, col='value'))


Библиотека дата-сайентиста #буст
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/dsproglib/6423
Create:
Last Update:

Команда дня: pipe

Сегодня делимся полезной фишкой из библиотеки pandas — метод .pipe() для создания чистых и читаемых цепочек обработки данных.

import pandas as pd

# Пример: очистка и преобразование данных в одну цепочку
def clean_data(df):
return df.dropna().reset_index(drop=True)

def add_age_group(df):
df['age_group'] = pd.cut(df['age'], bins=[0, 18, 35, 60, 100], labels=['Kid', 'Young', 'Adult', 'Senior'])
return df

# Используем pipe для последовательной обработки
df = (pd.read_csv('data.csv')
.pipe(clean_data)
.pipe(add_age_group))


Зачем это нужно:
🎌 .pipe() позволяет организовать преобразования данных в логическую цепочку, улучшая читаемость кода
🎌 Удобно для сложных ETL-процессов (Extract, Transform, Load)
🎌 Легко добавлять новые шаги обработки

Пример в деле:
def normalize_column(df, col):
df[col] = (df[col] - df[col].mean()) / df[col].std()
return df

df = (pd.DataFrame({'value': [10, 20, 30, 40]})
.pipe(normalize_column, col='value'))


Библиотека дата-сайентиста #буст

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/dsproglib/6423

View MORE
Open in Telegram


Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение Telegram | DID YOU KNOW?

Date: |

Traders also expressed uncertainty about the situation with China Evergrande, as the indebted property company has not provided clarification about a key interest payment.In economic news, the Commerce Department reported an unexpected increase in U.S. new home sales in August.Crude oil prices climbed Friday and front-month WTI oil futures contracts saw gains for a fifth straight week amid tighter supplies. West Texas Intermediate Crude oil futures for November rose $0.68 or 0.9 percent at 73.98 a barrel. WTI Crude futures gained 2.8 percent for the week.

Importantly, that investor viewpoint is not new. It cycles in when conditions are right (and vice versa). It also brings the ineffective warnings of an overpriced market with it.Looking toward a good 2022 stock market, there is no apparent reason to expect these issues to change.

Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение from ms


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM USA